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Executive Summary

Introduction

The recentrapid, ubiquitousand globalenvironmental changes require close exchange dagtw
knowledge holders, decisiorakers and policymakers to inform and support key decisions on the
management ofbiodiversity and natural resources. Science, its approaches, results and
recommendationare frequently associated with uncertaintile stakeholders and practitioners
often requie clear and certain information; a situation that limits the communicagtween
scientistsand the aforementioned groups and therefore also restricts efforts regarding conservation
and management of biodiversity.

Aspartof WPAL i nk environment to biodiversity:,analy.
task 4.5 aimedat identifying and summarisingexisting sources of uncertainties alongside the
biodiversity modelling procesand finally at quantifying those uncertainties in terms of analyses

and criteria of decisiomaking The latterturned out to be a challenging task. The differemgtang

approaches and frameworks in biodiversitpdalling as well as the involvement different

scientific communities itself are too heterogeneous to gain a general directive to quantify
uncertainty at this poinfTherefore, the focus of task 4.5 wasoriented; the partners worked on
reviewing these heterogeneous sources of uncertainty and on assessing how these are considered
and addressed in current research on biodiversity. The following three focal points wgreT$et
development of a concequial framework integrating the existing sources of uncertaintythat

are linked to the modelling process to set a baseline for prioritisation and potential future
quantification of uncertaintyhichis based on the current state of recognition and incorporation of

these sourcesThis also includes the identification of gaps in current data and methodologies
leading to future improvement&) The development ofcoherent and straightforward tools and

(statistical) methodsto explicitly account for uncertainty in biodiversity models andto start
closing the identified gaps. Thi s t aleovingas app
tools and met hods f orto iledoserlapmnaad synergi@s bahntapicsi nt er f
and involved partnerg3) As a perspective, we further provide some reflectionthe main

difficulties identified in the communication of uncertainties surrounding scientific results

towards stakeholders and decisiommakers of different levels. As this aim is a main objective of

WP6 6Stakehol der epaglaigeynecditalaonngluesda, eme ehere f o
and especially the visualisation of uncertainties directly stemming from biodiversity modelling
rather than from interactions within realms at the interface of science and policy.

Progress towards objectives

A large body of existing literature deals with issues of uncertainties alongside the biodiversity
modelling process, but there are only few attentp integrate all sources of uncertgiim one
conceptual frameworkAdditionally, the issue of quantifying those uncertainties is rarely addressed
overall This is insufficientwhile facing a constant increase in velocity of decisioaking,
especially concerning those decisions that tardeture environmental changes and societal
developments

As a first point, we wilbriefly placethe process of biodiversity modelling within the sepalitical
and socieeconomic context, in which the need of clarificateswellthe formulation of research
guestions arise. Following, we will summarise tloeir essential sources of uncertainty in
(biodiversity) modelling, i.e. 1iata i both environmermatl and biological, (2xalibration i i.e.
characteristics of the modelling process itself, ¥8)idation i i.e. the process of testing the
accuracy of the assigned models andpfdjections, andjointly integrate them into the conceptual
framework.
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As a next step, we will discuss the issu@pagation of uncertainty with increasing complexity
alongside the modelling process arke current possibilities to actually quantify those
uncertainties. As a last point, we will discugBnmunication strategies (including visualisation

of model uncertainty) to integrate the matter of uncertainties to theerface of scientist and
decisionmaker involvement as well asthe overall process of informing conservation and
management of biodiversity.

Achievementsand current status

The deliverable follows the structure of the developed conceptual framewdréligns along the
abovementioned sotes of uncertainty. Thereby, the partrrengewed the aspects and implications
of all thesesources andleveloped tools to address these questions as illustratedyliycase
studies supporing the reduction and/or incorporation of uncertainty in biodiveraitgd species
distributionmodelling

1) Concerning the availability and bias in biodiversity dasawell as environmental predictprs

there was a strong increase in publications during the last years in both, making data sets available
andrevealinggaps in data coverage. Nevertheless, it has to be noted that a sheer larger amount of
available data a@es not readily translate to a greater knowledge. A stratified andandom
sampling that is congruent among countries and continents is necessary to systematically tackle
questions in biodiversity research that then can inform management decisionsnaad/ation

action.

Our ability to define relevant temporal baselines for biodiversity is still limited and this
creates uncertaintyspecially due to the lack of knowledge about biodiversity states prior to
the rise of harmful anthropogenic activiti€ase studyl summarisesn assessment @uch
temporal baselines based on European monitoring schemes.

Case studyll gives an example on how to assess biodiversity metrics directly via satellite
remote sensing to overcome limitations by deriving them from field observafibisscase
study comes with a readyto-use openrsource software implementation.

Case stuly Il presents astatisticalmethod for a scalepecific regression to assess the
importance of seval environmental variables ogcosystem processes at different spatial
scales.

2) Species distribution and other biodiversity models have expedenc®cument& strong rise

ard advancementyhich isalsotrue foraccountingor uncertaintywithin the modelsNevertheless,
there is still room for improvement, especially if more biodiversity data will be available in the
future thatwill support the parameterisation @enmore complex models.

3) Using an appropriate accuracy measure is essential for assessing the prediction accuracy of
biodiversity models. Stillaccuracy measures undergo much l@sgelopment and discussion itha
the previous sources of uncertainty.

Case study IV introduces spatially corrected verssoof currentand commonly used
accuracy measurethat will contribute to evaluate prediction errors in presence/absence
models, especially in case of medium or hadggree of similarity of adjacent data, i.e.
aggregated (clumped) or continuous species distributidms. case study comes with a
ready-to-use opensource software implementation.

4) Reporting uncertainty in projections provides confidence in madeillts that supports decision
making in conservatiorelated recommendations and policies. Uncertaintspeciallyin the
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future distributions of species render any decisions about where or how to impleoneetvation
actions difficultand may increasexpenses whenever large areas must be managed.

Case study Vtakes an overall assessment of uncertainties surroundingediff@xonomic
freshwater groups, bapplying different scenarios of climate and lars® changéo data
from theRhineMain-Obsenatory (EU BON) test site.

Case study VIpresents an overall assessmenthef uncertainty of predictions using the
AquaMaps framework.

Whenever one takes the steps from the iterative procesfudata (collection), to modelling,
measuring its accuracy and projection, uncertainty surrounding each of the corresponding
techniques and approaches propagates through the whole process. This is generally true for an
increase in complexity of modelling freworks, as each parameter that has to be parameterised
adds its own uncertainty to the model outco®efar, complex models are often also surrounded

by a high model uncertainty, as eaoherentparameterisation is surrounded by uncertaortyits

own.

Case study VIl presents a Bayesian modelling framework that explicitly accounts for bias
due to different sampling effort and demonstrates (1) how to incorporate this information on
uncertainty directly into a modelling framework and (2) how to propaiipgeuncertainty
throughout the modellhis case study comes with a readip-use opersource software
implementation.

Quantification of uncertainties alongside the modelling process is an elaborative, but yet inevitable
task, if the ultimate goal is to inform the scientific community, stakeholders and the general public.
At the moment, quantification often means assedsi@gmportance of each of the beforementioned
sources of uncertainty, by having sevéral r e a foreaah greup.

Case study VIII is an example at the forefront of quantification of uncertainty in
habitat/landcover classification models species disibution modelsn a general wayor
future assessments.

Sciencepolicy audiences are highly diverse and often receive information that differs in both
quantity and quality compared to what science typigaibvides. Stategies of communication, i.e.

which information are inevitable to the audience and how can they be best communicated, change
with the addressed audience.

Future developments

Reporting uncertainties alongsidach stef biodiversitymodellingis essential andhould bethe

golden standard within and outside the scientific commuAityuncertainty assessment should be

one of the preliminary steps in any relatectisi®n-making process, such astionsbased on
biodiversity modellingresultsor the delineation of a biodersity conservation ared herefore,
conservation planners should identify uncertainties in the planning process and, when necessary,
evaluate the sensitivity of conservation planning outcomes to the different sources of uncertainty.
Additionally, identifed uncertainties may require further targeted monitoring to incorporate them
into the managemendevelopmentprocess.This deliverable aims at creating awareness for
discussion and integration ehodel uncertainty among all parties involved in informing and
developing key decisions in biodiversity conservation and management.

Among biodiversity modelling procedurespecies distribution modalsare standard and essential
tools for understanding factors that affect species geographical ranges and for predicting their
response to current and future global changes and have atnaglashantiallymproved during the

5
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last decades.Although species ditribution modelsare strongly established in informing
management and conservation decisioasing the awarenessgarding souses of uncertainty and

the development of new methods to directly incorporate uncertainty at different levels of the
modelling process will finally improve the communication of uncertainties surrounding each
scientific result. This will then support a higher level of information concerning these decisions and
lead to a higher acceptance among stakeholders and deuiskars, asvell as lastly within the
general public.

After summarisinghe current state and limitations of this field, wil be ableto further improve
tools and method$o account for uncertainty ifuture biodiversity modelling In this respect,
severalactivities are at different stages of advancement, from already initiated tadvelhced.
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1. Gener al | ntroducti on

Biodiversity is a multidimensional cluster concept and uncertainties are inheremany of the
dimensionsof the research surrounding Tthe recent rapid and ubiquitous environmental changes
require close exchange be®n knowledge holders, decisinakers and policymakers to inform
and support key decisions on the management of biodiversity and natural reséhbrgds. of
particular impotance when considering that ongoing and future changdbhe Anthropocene
(Steffen et al. 2007&llis & Ramankutty 2008Sarrazin & Lecomte 2016)ill possibly result in
novel conditions and complex dynamics, so that recommendations and predictionsmaiih r
embedded witim an unprecedented level of uncertaimtya future with no current analogues
Specifications are needed as to what, precisely, is uncertain, what is the reason for uncertainty and
whether this uncertainty mattelSuntowicz& Ravetz 190, Haila& Henle 2014); specifications
andin-depthanalyss that recent assessmeisg. MA - Millenium Ecosystem Assessme2d05
Rio+2071 Cardinale et al. 201 Ehrlich et al. 201Rin biodiversity science were lacking.

Alreadyin 1921, Knightlinks measurable (thus quantifiable) uncertainties directly to the notion of

risk and the probability for a phenomenon to occur, going as far as almost synonymizing the notions
measurable uncertainties and risk.catled unmeasurable uncertainties are doutndae actually
ucertainties at al |l and associ at et (2013)twarns wi t h
against the unconsidersgnonymousause of the terms risk and uncertainty both irelsce and in

the media, because it can be misleading forstmemakers Following the German psychologist

Gerd GigerenzerQQirector of the Center for Adaptive Behavior and Cognition (ABC) atMia

Planck Institute for Human Developmgbbth terms have to be distinguisi@&hamnath 2017)

risk You are dealing with risk when you know all the altenrest, outcomes and their
probabilities.

uncertainty You are dealing with wuncertainty whe
outcomes or their probabilities.

Uncertainty has always surrounded and will always surround human demialong processes and

has been one of the main drivers of scientific development (Funtédvka vet z 1990, Ped
2014).Threemajor categories of uncertaintiemn be classifi (Walker et al. 2003Howell et al.

2013: i nexactness (technical uncertainty), unr el
with ignoranceodo (epistemic uncertainty). The

predictivebiodiversitymodelling, as it lacks data to make it quantifialdespite the efforts done
and the number of parameters measutteele will always be a part of unexplained uncertainty in
eachmodelandresutt;i t i ng Donal d Ru rl€YokFetduarg 202a mous quot e

0There are known Kknowns,; there are things
known unknowns, that is to say we know there are some things we do not know. But there
are also unknown unknowns,thees we donét k&how we dondt Kknoc

The latter, inhererdnd unquantifiable uncertainty has a proven impact on the outcofmasdels

(Regan et al. 2002)Valker et al. 2003put should not prevent good science to hagpehe 6 er et a
2014) Both scientists and decision makers have to accept that uncertainty is systematically
underestimated antthat obtained results only represemtsubset of total uncertainty thatay be

guantifiable Reducing or avoiding uncertainty has been traditionallgetad in s@nce and

decision making issues, bunhcertaintywill never be completely reducible. Thereforee stress

8
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that one shouldatherembrace it than trying tovaid it (Haila & Henle 2014. As aitical aspects of
interpreting and transferringcientific outcomes rely on uncertaingycareful communication of the
uncertainties involved with any analysis projection into the futuras well aghe usage oéxact,
agreedupondefinitions of concepts and terms neededlinguistic uncertainty; Bgan et al. 2002,
Kujala et al. 2013)To reduce such linguistic uncertainty within the framework of the present
deliverable, weprovide a glossary of important terrtigat are usethroughoutthe documentsgee
glossarybox at the end of this introduction).

For these reasons, WP4 designed a separate task on uncertaibtativiersity distribution and

trend assessments. Hevee aim at classifying the different sources of uncertainty when assessing
current and future trends in distribution and abundanspedies. We focus on quantifiable sources

of uncertainty but will also reflect on unquantifiable ones that are relevant for management or
decisionmaking. We will consider the propagation of uncertainty in hierarchical models or series of
combined modeland sketch the potential to quantify uncertainty. We will use results from our own
research within WP4 as case studies and complement them with existing literature to provide expert
judgement on the (relative) importance of each source of uncertaintydascgi for handling them

in research, management, and decisiaking. Lastly, we providsome reflections on how to
communicate uncertainty to peers and to stakeholders, including verbal, numerical and graphical
means.

At this point it has to be explity embraced that the process of biodiversity modelling is
fundamentally coupled with and embedded in its secimnomic context and furthermore an
integral part of the iterative cycle of sciendaéglre 1.1; Schmolke et al. 2010). Biodiversity
models hall the strong potential of supporting recommendations and limitations regarding the
entities they model, which potentially lead on guiding further scientific and societal actions such as
experimental, monitoring and/or conservation efforts. Those effoes tad to a process of
collective learning and the direction of further research, which again lead to the ermergence of new
problems and research questions, which are addressed by biodiversity modelling. Addison et al.
(2013) summarise practical solutiobs make those models visible and valuable for decision
makers. In doing so, they identify common objectives to the use of models in deceiory.

More importantly, they call for (1) modellers to involve decisibakers and stakeholders
throughtout themodelling process and (2) decisiorakers to involve modellers early on in the
process of problem formulation to jointly promote mutual understanding of the underlying
perspectives and concepiote that these challenges are in line with the aim of impgoscience
policy interface, which is also actively pursu
activitieso.

Task 4.5 is predominantly focused on ttlevelopment of tools and methods to assess and
incorporate uncertainty into frameworks of biodiversity modelling. Therefore, the-scommmic

realm of collective decisiemaking shall not be the major topic of this Deliverable. Nevertheless, it
is impor@ant to acknowledge that the process of biodiversity modelling is never detached from other
scientific components, polieyand decisiormaking or the general public. Concluding, this is also a
call for biodiversity researchers at any level to engage imyherad practice of decision sciences
(Polasky et al. 2011, Beale & Lennon 2012).
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Problem formulation
A

: Jjﬁ
ENVIRONMENTAL BIOLOGICAL
C P

e e CALIBRATION

VALIDATION

PROJECTION

PROPAGATION OF UNCERTAINTY

SIMPLICITY OF MODELLING PROCESS

Outlook directing further research
+ collective learning

PRIORITIZATION

COMMUNICATION

recommendations + limitations
guide action + experiments ‘L

: . L > report on action
guide monitoring po °

Figure 1.1: Conceptual framework illustrating the biodiversity modelling process within the iterative cycle of general d®eikiog processes in
the socicepolitical/economic realm.
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Whereas the majority of sources of uncertainty are quantifiable by having several treatments of each group, e.g. different
(groups of) environmental input variables, taxonomic data of different quality, different model types, different accuracy
measures, quantification of the accuracy of future projections is most often not possible due to the lack of data. Therefore,
qualitative and quantitative criteria have to exist to assess and prioritize the importance of each of the sources of
uncertainty.

Next to linguistic uncertainty in communicating uncertainties resulting from the process of biodiversity modelling, e.g.
vagueness and context-dependency of related terminology, communication strategies vary with the audience addressed.
Whereas the scientific community may cope with multiple trajectories, decision-makers and stakeholders may need a
reduction of specificity to foster decision-making. Furthermore, each involved person has its own agenda and own
normative goals shaped by socio-economic and cultural background, which add a component of behavioural uncertainty.

COMMUNICATION  PRIORITIZATION

Figure 1.2 Conceptual framework integrating the sources of uncertainty surrounding the biodiversity modelling process as well essthefpro
prioritisation and communication of uncertaintiesginating from such analyses.
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GLOSSARY BOX

Uncertainty: Uncertainty is the absence or inadequacy of knowledge regarding the descript
current state or future outcome and the absence of knowledge regarding probabilities of ong
possible future outcomes. In this context, it refers specificallggaincertainty oinput andoutput
state and process variables of models.

Uncertainty can be subdivided intiechnical uncertaintyinexactness)nethodological uncertaint
(unreliability), andepistemic uncertainty Aibor der wi t h i g nfictriveorcaneb€
represented aquantifiable errors, the latter often lacks data and is characterisegubljtative
statements at the most.

Funtowicz S., Ravetz J. (1990). Uncertainty and quality in science for policy. Kluwer, Dordrecht.

on of a
or more

Wh

Regan HM., Colyvan M., Burgman MA. (2002). A taxonomy and treatment of uncertainty for ecolpgy

and conservation biology. Ecological Applications 12:-628.

Walker W. E. et al. (2003). Defining uncertainiya conceptual basis for uncertainty managemer
modelbased decision support. Integrated Assessmemntl4.5

Refsgaard JC., can der Sluijs JP., Hojberg A.L., Vanrolleghem PA. (2007). Uncertainty in th¢
environmental modelling procegsa framework and guidance. Environmental Modellingéftware 22:
15431566.

Kujala H., Burgman MA., Moilanen A. (2013). Treatment of uncertainty in conservation under cli
change. Conservation Letters 6:83.

Haila Y., Henle, K. (2014). Uncertainty in biodiversity science, policy and managemeaoticaptual
overview. Nature Conservation 8:-23.

Risk Risk results from the absence or inadequacy of knowledge regarding the descripti
future outcome. It can be formalized as the probability of a possible future outcome times its
(severemss).

tin

nate

bn of a
impact

Prediction: A prediction is a statement about the future that is purely based on a set of q
derived from a statistical model and its inherent assumptions, without using further assu

i

ntities
tions,

e.g. concerning future environmental and semonomic developments. Predictions are based on

data and evidence and are therefore less broad than projections or scenarios, often addres

a smaller

scale or shorter time period, but involve a lesser degree of uncertainty at the same time. Frgquently,

thouh, the term fApredictionodo is used when i

Dormann C.F., et al.(2008). Prediction uncertainty of environmental change effects on temp
European biodiversity. Ecology Letters 11: 2384.

Buisson L., Thuiller W., Casajus N., Lek S., Grenouillet G. (2010). Uncertainty in ensemble fore
of species distribution. Global Change Biology 16: 11457.

Evans MR. et al. (2018). Predictive Systems Ecology. Proceedings of the Royal S@iety

proje

erate

casting

Guisan A. et al. (2013). Predicting species distributions for conservation decisions. Ecology Leffers 16:

14241435
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Projection: A projection is a statement about the potential future of a quantity or set of quatities,
often derived from a statisticahodel. In contrast to predictions, projections involve assumpfions

beyond modelling, e.g. concerning future environmental and -saecioomic developments, that
may or may not be realised. Projections may be the raw material for scenarios.

IPCC glossaryhttps://www.ipcc.ch/pdf/glossary/tipcc-termsen.pdf
Keyfitz N. (1972) On Future Population. Journalloé American Statistical Association 67: 3363

Singer A. et al. (2016). Community dynamics under environmental change: How can next gefperation
mechanistic models improve projectiafsspecies distributions? Ecological Modelling 326:783

Scenaria A scenario is a synopsis of a plausible sequence of possible future actions, eyents or
developments. It is a qualitative, often simplified set of assumptions about key drivingefndEs

their relationships to support thinking about the future. A set of scenarios depicts dffferent

interpretations of the current situation (baseline) and illustrates as well as compares alfernative
pathways of uncertain environmental and samionomic deelopments and their divergirlg
consequences related to biodiversity.

Zurek M. B., Henrichs T. (2007).Linking scenarios across geographical scales in internafjonal
environmental assessments. Technological Forecasting and Social Change -1295282

Spangenberg H. et al. (2012). Scenarios for investigating risk to biodiversity. Global Ecology and
Biogeography 21:88.

Validation: Validation is a process of assessing whether a value of a data item derived [from a
statistical technique is accurbteredicted, i.e. it comes from a given set of defined and acceftable

values. It is a test of correctness, completeness, intentional implementation and sfructural
plausibility.

Rykiel, E.J. (1996). Testing ecological models: the meaning of validatiariogical Modelling 90: 229
244,
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2.Sources of wuncertainty

Spatial,temporaland taxonomignformation related to species occurrences is at the core of
modelling biodiversity data and iat presentpredominantly conductedvia species
distribution models (SDMs; also called niche or habitat suitability modedt)assess the
relationship between species ranges and potential changes of these ranges as a response to
different factors (Elith et al. 2006, Dormann et al. 2§)08herefore SDMsact as the nmar
sourceinforming decisions onmanagement and conservation lmbdiversity. SDMs are
typically based on several assumptions that simplify the biological reality and/or help to
satisfy statistical presumptions Those assumptions occur at any step of the modelling
process starting with raw data and ending with potential projections to djsteort
analogousspaces or futureand therefore, each of these steps contributes to the amerge

of uncertainties while modellghbiodiversity (Dormann et al. 2008 Thereby, uncertainty
propagate throughout the modelling process (Guillgeroita et al. 2015and substantially
influences the decisioamaking process that may be derived from it

Awareness of different sources wficertaintyin the describeanodelling process is essential

for an unbiased and strong transfer of scientific results to inform decisaders and
stakeholdersIn the following, we will characterisall potential sources of uncertainty

(Figure 1.2): 1) datai both environmental and biological, (@librationi i.e. characteristics

of the modelling process itself, (8alidationT i.e. the process of testing the accuracy of the
assigned models and (@)ojections andintegrate thenin ajoint conceptuaframework We
summari se the current state of aiesaithmthess f o
scientific community and the current developments of methods to directly account for the
diverse set of uncertainties while modelling biodiversity.

2.1 Data

The societal and scientific interest in understanding patterns and processes of biodiversity loss
and changes in species rangetarger scaledfrom regional to country to European aumal to

global scale) fundamentally increased during the gastdes, as more and more processes
such as climate and lantse change, habttfragmentationurbanisatiorand the introduction

of alien speciesvere found to (inter)ya at these scales (Sala et al. 2Bls & Ramankutty
2008,IPCC 2013). At the samtame, new technologies and global initiatives have produced
and conelidated a huge amount of data ate analyses of thegerocessesvere highly
promoted by the availability of large European and global data sets (species distribution
databiodiversityinventories e.g.,GBIF - Edwards 2000, Map of Lifé Jetz et al. 201 2Atlas

of European Breeding BirddHagemeijer and Blair, 1997, Atlas Florae Europadashti and
Lampinen, 1999; trait data, e.g., TRYKattge et al., 2011; climate data, e.GliMond -

Kriticos et al., 2012 . Currentl vy, we are |living in an
established irboth scientific and non-sdentific realms and scientistrost certainly face the
biggestinformationavailability of all times(Kelling et al. 2009Hampton et al. 2013)This

was madepossible duea a strong progress in digitadison of biodiversity data anthe
development ofdata standards (Guralnick et al. 2007) as well as an increased effort in
utilising citizen science inatives Bell et al. 2008Dickinson et al. 2012).

Despite these advanceagpbal biodiversity data are generally incomplete atildl biased in
many ways (for comprehensive reviews see Hortal.€2015,Meyer 2016 and Meyer et al.
20163 and thescientific community faces the urgent question on how to distribute resources
to balance those biases, to decide where to invest intariag infrastructure and which
biodiversity unitso monitor. There is still insufficient consistency among nationatgional
monitoring and Baring of biodiversity data (lPeira et al. 2013). Those gapave to be filled
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systematically andbiases have to be explicitly addressed to enswlisputablemanagement
strategies and policies in biodiversity conservatidavatheless,tiis important to noteéhat
although it is a crucial intention to increase data availabititythe purpose of analysing
biodiversity responsgo global change, the mere increase of data availability is no guarantee
for alikewise increase in knowledgeas available data, no matter how detailed, will always
have an inevitable component of uncertainty (no matter of which of the lpeémtioned
sources). Therefore,ert to taking the effort of a systematic observation and collection
biodiversity entities that needs to encompass local, natioegipnal and global scales
(Peeira et al. 2013)there is also a strong ne¢al explicitly account for data biases and
limitations in existing and future modelling frameworkisl¢yer 2016;Meyer et al. 2016a,
20168.

This section will state the potential biases that have to be taken into account, whenever data
are used for biodiversity modellingVe distinguish betwee(l) biological variables, which

are the response of biodiversity models and usually a species ofbt#xalso traits or
community compositions)f certain interest and (2) environmental variables, whicluseel
aspredictors in biodiversity modeisasboth parts of available data face different difficulties

in processing. Overall, data is the source of uncertainty, for which the largest body of
literature investigating the effect of its surrounding uncertainty has been as3ssedl
summarise impdant components of this source of uncertainty in the following, especially as
relatively new approaches such as the comprehensive use of remote sensing and the
conceptuasation of Essential Biodiversity Variables (EBVs) arecentadvancesin this

realm.

2.1.1 Biological response

A large body of literature assessing the uncertainties surrounding biological response data
exists and comprehensive reviews and assessments have been published recently (Hortal et al.
2015; Meyer 2016 Meyer et al. 2015, 20Hp. Those authors thoroughly discuss the several
shortfalls in the current state of biodiversity knowledge and make this source of uncertainty in
biological modelling one of the best documented. There are various reasons for the limitation
of data accessibily, which often are uncorrelated and dominant in different regions in Europe
and of the world (Meyer et al. 2015). New data can and should be generated by establishing
straightforward and unifying biodiversity monitoring schemes to close critical dataagaps
well as by the integration of already existing, still faigitalised data in museums and other
collections, by making the best use of data derived from ecological field studies and by
utilising satellite remote sensing techniques (Proenca et al..2016)

Most nichebased models are based on species occurrence data, by either using
presence/absence or preseons/ data. Raw occurrence data arising from recorded presences

of species are usually gathered in monitoring schemes, museums, herbaria, Vieyd sur
volunteer observation network&rahamet al. 2004 Dickinson et al.201Q 2012. While

these data are increasingly used to generate species distribution maps, they come along with
various knds of uncertaintieRocchiniet al. 201). Uncertainty may arise from differences

in samplingprotocols and design, the lack of systematic or exhaustive surveys and failure to
report absencegYoccoz et al. 20D). GuilleraArroita et al. (2015) summarise three
probabilities that influence the chance of recording a species at a particular sitiee (1)
probability that a species occupies the site, (2) the probability that the site is sampled and (3)
the probability that the species is detedean that it is presentf the detection of species is
imperfect, which is predominantly the case evenirfamobile species (Garraret al. 2008,

Chen et al. 20135DMs are confounded and rather estimate the likelihood of a species being
observed rather than being present. Speci es¢
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and create false absenc#sabsences are reportatlall (Tyre et al. 2003, MacKenzie et al.

2006, Chen et al. 201,3and/or false positives due to misidentification (Miller et al. 2011,
Chambert et al. 2015). In additiospecific occurrences or observations are more certain than

oo hers (e.g. recording a birdds nest > a birc«

The inherent complexity and dynamics of species distributions are reflected in the quality of
the available dat@Jiguet et al. 208) Dormann et al. 2008 Elith & Graham 2009Rocchini

et al. 201);, considering species abundance data that are essential for understanding
population dynamics,hey are generally rather scarCehese shortfalls in data availability
finally affect estmates of minimum viable populations (Reed et al. 2003), once again
highlighting the crucial importance of sttures promoting longerm monitoring of
population trends (Hortal et al. 2015).

Attempts exist to combine the efforts underlying théstaxg data sets into an informative
distribution mapJetz et al2012), but available mapare still predominantly biased presence

only maps and the harmonisation of and collection of unbiased data remains an important
challenge for the future.

Spatial uncertainty

Despitethose effortsbiodiversity data are still rarely collected in a stratifiand regular

manner, but predominantly arise from random sampling that is opportunistic and spatially
biased (Albert et al. 2010, Guillefaroita et al. 2015)If the spatial varation in sampling

effort corresponds to the spatial varation in environaledata (e.g. due to differences in
detectability per habitat), this might gener
and potential range&giselle et al. 20083eale & Lennon 2012).

Different localities obtain different data qualities, iefh results in different, spatially
structured (and therefore biased) quality of biological response data (Boakes et al. 2010,
Rocchini et al. 2011, Yang et al. 2013, Hortal et al. 2015, Meyer et al. 2015). This spatial bias
or spatial uncertaintymay morever aise from different reasonsome areas are better
mapped than others and are spatially biasedhis regard(Manceur & Kihn 2014,
Kuemmerlen et al. 2@), which increases uncertainty and decreases predictive power of
biodiversity models This might be due to differences in sampling effort and mapping
schemes in these localities (Albert et al. 203@)ich mightin turnbe a result of differences

in the overall socieeconomic status (Amano & Sutherland 200&yer 2016;Meyer et al.
2016&), differene@s in scientific infrastructures (e.g. the density of institutes or the proximity
to the next research centtdoerman & Estabrook 2006and/or the simple accessibility of
certain areas (e.g. via roads; Barve et al. 2011). This leads to the fact thaitesowrith
weaker positions regarding these measures are often those with highest biodiversity (Amano
& Sutherland 2013).

The great majority of occurrence dasdthough increasingly available freely and in a digital
way, furthermore carry uncertainty inthar geographical locationgNaimi et al. 201}
Location uncertainty arises from various factors, including inaccuracy in the measurement of
location, failure to specify the geographic datum, errors inrgiencing, and erator
errors(Graham et al. 2004Naimi et al. 2011 Recent studies have addressed the impact of
positional errors in species occurrences on the accuracy of 8ilvai et al. 201L Graham

et al. (2008)explored whether positional error in species occurrence data influenced SDM
performance, and they compared various models in this re3jegt.concluded thatommon
modelling techniques(see 2. 2. Model calibration: model types and proceduresare
particularly robust to a moderate level of positional error. Those techniques would allow
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useful predictions of species distributions even whemiwence datare not free ofampling
errois (Graham et al. 200&laimi et al. 2011

The spatial context of species presences (and absences) in SDMs addihasatybe
considered from a statistical point of view @void misinterpretations, as typically spatiall
organised biodiversity data are often spatially autocorrelated, i.e. adjacent locations or data
points share more similar values than distant ones (Dormann et al. 2007, Kihn & Dormann
2012). If this patter propagates to the residuals of a model, one of the key assumptions of
standard statistical analyses, i.e. that residuals are independent from each other identically
distributed, is violated. This violation in turn might lead to biases in model parameter
estimation. If the presence of spatial autocorrelation is detected in model re@dyalsing

Mor anayGe dr y, @ s thé&gfore strongly recommended to use methaatsaitcount

for this phenomenanOtherwise there is a Higchance of misinterpreting observed and
detected patterns (Kiihn 2007).

Temporal uncertainty

Under the current rate of global change, successful biodiversity conservation and management
increasinglydepends on a meaningful comparison among recent and historic conditions
(Barnosky et al. 2017)n contrast to spatidbiases where baselines to inform conservation
strategies are identifiednore commonly such baselines are predominanthyssing for
temporal uncertainty, i.e. it is uncertain which changes and progresses about which time
frames have to be evaluated. Lacking such temporal baselines is a major source of uncertainty
while implementing effective biodiversity conservatistiategies(Mihoub et al. 2017, see

Case Study ). Moreover,predictions of biodiversity trends will substantially benefit from
suchbadei nes; one of the major calls of Deliver
biodiversity changes using improved Europehdra t a s ®Vithin cthee sséope of this
deliverable, UFZ followed up on this topic andissessed théeginning and temporal
consistency of European monitoring schemes over time.

Case study|: Setting temporal baselines for biodiversity: the limits of
avalable monitoring data for capturing the full impact of anthropogenic
pressures

Partners involved: UFZ (JearBaptiste Mihoub, Klaus Henle, Dirk SchmelleEBCG
CTFC (Nicolas Titeux, Lluis Brotons), NHM (Neil A. Brummitt).

U For more details, see: Ann@&xi

U For the original paper, see-B. Mihoub, K. Henle, N. Titeux, L. Brotons, N. A.
Brummitt and D.S. Schmeller. Setting temporal baselines for biodiversity: the limits of
available monitoring data for capturing the full impact of anthropogenic pressures
2017. Scientific Reports 7: 41591.

a) Context

Our ability to define relevant temporal baselines for biodiversity is still limited. Nonetheless,
temporal baselines are needed for biodiversity, in order for the change in biodiversity to be
measured oveirhe, the targets for biodiversity conservation to be defined and conservation
to be implemented and evaluated. In this respect, the lack of knowledge about biodiversity
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states prior to the rise of harmful anthropogenic activities is a critical limitatiorodr
understanding of the full impact of such pressures as well as of past and therefore current
changes.

b) Concept / Objective

Most structured biodiversity monitoring schemes have been initiated within the last few
decades, whereas most of the antbggmic pressures that are currently impacting
biodiversity have been operating over centuries or even millennia. Although the limitations of
biodiversity information available from monitoring schemes are widely recognized, a
comprehensive and quantitatigealuation of the potential of monitoring schemes to identify
temporal baselines capturing the impacts of major anthropogenic pressures on biodiversity is
still lacking. We conducted a quantitative evaluation of the temporal baselines that could be
identified using comprehensive information on biodiversity monitoring schemes sourced from
several metalatabases.

c) Data and methods

We focus on Europe as one of the regions of the world with the oldest and most intensive
biodiversity monitoring efforts. Weeport the start of European biodiversity monitoring
schemes to examine the possibilities offered by available data for documenting past states of
biodiversity with respect to different (i) taxonomic groups, (ii) EBV classes and (iii) types of
data collectd. Then, we compare the onset of biodiversity monitoring schemes with historical
time-series or reconstructions of the main anthropogenic pressures that are currently acting on
biodiversity at global or regional scales.

For each taxonomic group studietype of data collected and EBV class targeted, we
calculated descriptive metrics of the temporal baseline that could be drawn for biodiversity
based on the starting year of the biodiversity monitoring schemes in Europe. We then
compared the start of biodxsity monitoring schemes with global or regional khegn time

series reflecting the major anthropogenic pressures that are known to impact biodiversity the
most

We first identified the value of the pressysecorresponding to the starting year edch

schemei by projecting theintersect between the starting year of the schermaad the
regression trend of the pressure on the pressure axis. We then determined the level of pressure
reached at that time, expressed as the percentage of the presgaralready reached when

the schemes started, as follows:

% pressure range reached = medRinP/rangP
where the medP is the median of @IminP is the minimum value of the pressure over time
and rangP is the known range of that pressure, which alasiated as the difference between
the maximum and minimum values of the pressure along thesemes.
d) Main results
Most of the major anthropogenic pressures that are known to impact biodiversity began
hundreds of years earlier than the start oflliersity monitoring schemes-igure 2.1). More

importantly, anthropogenic pressures started to escalate exponentially from the beginning or
the middle of the 20th century, while the vast majority of biodiversity monitoring schemes
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started only after these pressures had already reached more than half of theirdpsesent
order of magnitude or had already peaked and decreased.

Setting temporal baselines from biodiversity monitoring data would therefore underestimate
the full range bimpacts of major anthropogenic pressures. In addition, biases among taxa and
organization levels provide a truncated picture of biodiversity over time. In terms of median
starting dates, birds and fishes are the focus of the oldest schemes, whereas &mtiesing

on amphibians, molluscs, plants and reptiles are more recent (approximately a decade later).

Comparisons of starting years among EBV classes and types of data collected were only
possible for a reduced set of monitoring schemes. The overdlirgiof the start of
monitoring schemes dating back to the mid 1
from all databases previously found for the taxonomic groups.

e) Conclusion & Implications for considering uncertainties in biodiversity madell

We demonstrate that most of the data currently available from European biodiversity
monitoring schemes have been coll ected from
anthropogenic pressures might have started to impact species populations anities

These limitations need to be explicitly acknowledged when designing management strategies

and policies as they seriously constrain our ability to identify relevant conservation targets
aimed at restoring or reversing biodiversity losses.

We argue that information derived solely from current biodiversity monitoring schemes is not
well suited to setting relevant temporal baselines. To face this important challenge, we
encourage both scientists and poliogkers to adopt a more conservative atétuoward
temporal baselines for biodiversity by explicitly recognizing the uncertainties associated with
current limitations. This implies acknowledging limits to our ability to document past
biodiversity states from monitoring schemes, and that the chamgasured from these
schemes may seriously underestimate the full impact that major anthropogenic pressures have
had on biodiversity. A consistent integration of fragmentary information across disciplines are
critical if we are to set temporal baselinewr fiodiversity that reflect past states of
biodiversity before the rise of major anthropogenic pressures.

19



Deliverable report4.3) EUBON
O o ._ S = =
T o a < £ [
s g 2
L m Atmospheric CO? -~ )
g o = Temperature anomalies | L(oj S —
o - ™ ‘é ")
C | = -05'
© = a
2 o o 9 c
= " — ) [&] —
= © ® €
© o =z
) - 2 c
2 o o O 8
£ - - w0 O s
R T T T T — o

1700 1800 1900 2000
Time (year)

_ N W E
c 5 2.
< 8° ° = EZE
g T TO
x 8 o - © = g ‘©
) c =
C o _| M Human population = =R
2 < M Forest o -
= L < © c 5

= Pasture S o
é Cropland o = D
o o = D
S & 7 L & E O
9 c q_)mo
<C - g 8 —

o - -o 3 8

I I T T I [ I
1700 1800 1900 2000
Time (year)

200

50 100

0

1.0 20 30

0.0

FP7-308454
- - © T
(8]
b g
— M Nitrogen (N) e} a
M Phosphorus (P) - -
. [22]
o 5
T a
] £
J ot
7] c
3
- - o
I | I | | I | E
1700 1800 1900 2000
Time (year)
1 d
_| M Furan
M Dioxin
B T I T I I I I
1700 1800 1900 2000
Time (year)

Figure 2.1 Temporal mismatch between biodiversity monitoring schemes in Europe and

major global or regional anthropogenic pressures knowmtpact biodiversity The onset of

biodiversity monitoring is represented using the median value (vertical red line) and the first

and third quartiles (light red area) of the starting yearsbhajdiversity monitoring schemes

Major pressures include aJ climate: global temperature anomalies and European

atmospheric concentrations of carbon dioxidé) @lobal anthropogenic nitrogen and

phosphorus,d) global human population sizes and global land use changesdapal{utant
emissions in the United KingdditdK).

Taxonomic uncertainty

Different taxonomic groups respond differently to environmental driv@nger-taxon
differences Mora et al. 2008Meyer et al. 2015, Meyer 2018uemmerlen et al. 2014
case studyVl). Therefore, it is of crucial importance that we drive efforts to harmonise data

guality between different taxonomic groupypically, plants, butterflies, mammals and birds

are the most prominentlgvestigatedyroups,as they historicallyrold the highestinformation

densityat least in Europe, due fong-lasting scientific andpublic interest Nevertheless,
t he
biodiversity and ecosystem change over spacetiamel Until then, a lower availability of

assessing

status

of

ol

ess

popul ar 0

taxo

information will continuily result in a smaller feed of information into the modelling process
and finally in a shortfall regarding the prediction of future changes in biodiversity entities.
This is of special imptance, when you consider that groups of species do not act
independently of each other, but are tied in numerous interactions, which will be altered when
changes in biodiversity occur. Striving for a more complete data coverage across taxonomic
groups wil enhance our understanding in thisard
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As a second pointlso subspecies and populations can respond differently to environmental
drivers(intra-taxon differencés Therefore, uncertainties and errors arising from inconsistent
usage of taxonomiclassification and/or falsely conducted identificati¢gdansen & Dengler
2010, Ahrends et al. 2011yvill lead to biased and potentially misleadimgplications that
inform management and conservation decisions.

Insights fromRemote Sensing mitigatinguncertainty

Satellite remote sensing can deliver lelgm data sets with an extremely high sampling
frequency as well as an extensive geographic coverage (Pettorelli 2014, Skidmore et al. 2015,
Proenceet al. 2016). Whereas remote sensing has alreadydstalished as a powerful tool

to gain global informatiomn environmental predictors, it becomesreasinglycommon and
approved in the direction of biological response variables (Schimel et al. 2013, Skidmore et
al. 2015, Pettorelli et al. 2016, Rocchini et al. 2048 atime and cost effective way for
providing explict maps of species distributions. Therefore, remetesisig actsas a key tool

for deriving spatially explicit ancillary variables, such as climatated drivers or biomass
estimategFeilhaueret al. 201). Meaningful information derived from remote sensing might
also be based on the classification of remotely sensed satellite or airborneomhitper
spectral images to create habitat maps, which are related to species distributions.

Mapping and modellinghe complexity of ecosystems and their changes over time is a key
issue in spatial ecology and biogeography. Evidence exists that abrupt classification of
vegetation types, especially at the species level, can present misleading or even erroneous
results(Schmidtlein & Sassin 2004 Usually, vegetation assemblages show changes along
environnental gradients (e.g., moisturesmil type) and therefore transitions are normally not
abrupt. Alternative approaches like ordination methods aim to extract major floristic gradients
describing the variation of the assemblages as metric variables, thus still retaining the
continuous chacter of the datéSchmidtlein & Sassin 2004Gradients can be related to any

sort of remote sensing data using regression approaches, such aszgehiemabr models or

partial least square regressigieilhater et al.2011).

Regardless othe method being used, baitso true for (satellite) remote sensing techniques,
the assumptions for carrying out classification are associated with one major drawback:
classes are mutually exclusive and have discrete boundaries separating each other. Hence,
processing and classifygnimages can result in a substantial loss of information, due to the
degradation of continuous quantitative information into discrete cléBsdéseret al. 2002

Foody & Cutler 200B Classification can implicitly degrade information and increase
uncertainty in the data and related outcomes. The uncertainty related to the classification
process often remains hidden in the output maps, thus it cannot be readily accounted for. In
other words, the error produced during the classification process is not accounted for in the
output. From that, two sources of uncertainty can be defined in the classification of remote
sensing data; (i) vagueness, namely the lack of sharpness of relestandtidns, and (ii)
ambiguity, arising from contftiting distinctions (discordancKjir & Wierman 1999 Rocchini

& Ricotta 2007.

It has to benotedthat remote sensing information on the distribution of species and other
entities of biodiversity modelling provides not only valuable information on their current
association with different environments, but this informatioay serveas a baseline for
conditions that will exceed the assessteadystate conditions (Schimel et al. 2013). As the
rate of environmental change is high and will lead to new combinations of environmental
conditions it isof upmost importance to gain infoation on such baseliseas soon as
possible (Schimel et al. 2013). Therefore, a curegditional challenge iso link remote
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sensing data to local observatipttsfinally upscale those measures by generating models on
ecosystem processeSEO BON 2015 Proencaet al. 2016) and potentially Essential
Biodiversity Variables (Skidmore et al. 2Q1Pettorelli et al. 2016

The following case study by FEM gives an example on how biodiversity metrics can be
assessed diregtlvia satellite remote sensing to overcome limitationsdlvgctly deriving

them from field observatiofCase Study Il). In Detail, FEM introduces an R package to
apply Raods Q to remotely sensed data to fL
used diversity metrics.

Case Studyll : Measuring Rao's Q dively index from remote sensing: An
open source solution

Partners involved: FEM (Duccio Rocchini)
+External Partners:

Technische Universitéat Berlin, Department of Landscape Architecture and Environmental
Planning, Geoinformation in Environmental Planning Lab, Be@iesmany KMatteo

Marcantonio

Department of Environment al Bi ol odRgme, Uni v e
Italy (Carlo Ricotta

U For more details, see: Ann@&2

U For the original paper, see: Rocchini MarcantonioM., and C. Ricotta. 2017
Measuring Rao's Q diversity index from remote sensing: An open source solution.
Ecological Indicatorg2 234238.

(a) Context

Estimating biodiversity from field data presents a number of drawbacks mainly related to time
and costs, together with intrinsic difficulties to build standardised procedures for repreducibl
data gathering (Palmer et 2D02).

It has beendemonstrated that the measure being used can lead to very different (and
sometimes misleading) results. As an example, one of the mostly used diversity measures of

the landscape based on spectral remotely sensed datahie. Shannonds entr o]
1948), has a number of implicit drawbacks like: i) the difficulty to discriminate between
differences in richnessr relative abundance (Nagend2@02) or ii) the impossibility to

consider spectral values as numbers instead ofsedagRocchini & Neteler 2@3).
Concerning the second point, Shannonbds entro
of spectral values but it does not explicitly consider the numerical magnitude (values) of
pixels.

(b) Concept / Objective

On the contrary, Raobs Q i ndeixand(j Raue byl 9 8 2)
considemg their pairwaise distanch:
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The aim of this part of the Deliverable is to solve the aforementioned issue, by the application
of Raob6s Q t odataie anocopee soyrce=mvinoaneedt (Rgcchini & Neteler

2012%), providing a straightforward R function to calculate it in 2D systems. As far as we
know, this is the first attempttme asur e Rao06s Q in a 2D space
data.

(c) Data and methods

The functionspectralrao)t o der i ve Rao0s {t3tcal lguaget(R @Gorei n t h
Team2016), is stored in the GitHub repository https://github.com/mattmar/spectralrao. The
function accepts matrix, RasterLayer or SpatialGridDatiade object as input (or a list of

them).

(d) Main results

For the gnthetic set of data oFigure 2.2 H is of low applicability, due to the high
heterogeneity in the input dat a. On the cont
with higher hetrogeneity since it allows considering distances together with relative
abundance of values, the intersection between the simulated submatrices.

Figure 2.2 An example of the calculation of Rao and Shannon indices on a hypothetical
NDVI image. In this case, Shannon index tends to overestimate diversity since it considers
the differences in the abundance of classes, while Rao Q seems to be more reliaplattakin
account their distance.

In Figure 2.3, it is apparent that H tends to saturate in case of high diversity since in the local

9x9 pixels window of analysis all the pixel values, even though similar among them, are still
different. As a consequencgnce H does not take inaccount their distancésit only their
relativeabundances; t s val ue wi || al ways approxi mate s
overcomes this limitation by the pairwaise distance term.
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