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Executive Summary 

Introduction  

The recent rapid, ubiquitous and global environmental changes require close exchange between 

knowledge holders, decisionmakers and policymakers to inform and support key decisions on the 

management of biodiversity and natural resources. Science, its approaches, results and 

recommendations are frequently associated with uncertainty, while stakeholders and practitioners 

often require clear and certain information; a situation that limits the communication between 

scientists and the aforementioned groups and therefore also restricts efforts regarding conservation 

and management of biodiversity. 

As part of WP4 óLink environment to biodiversity: analyses of patterns, processes and trendsô, 

task 4.5 aimed at identifying and summarising existing sources of uncertainties alongside the 

biodiversity modelling process and finally at quantifying those uncertainties in terms of analyses 

and criteria of decision-making. The latter turned out to be a challenging task. The different existing 

approaches and frameworks in biodiversity modelling as well as the involvement of different 

scientific communities itself are too heterogeneous to gain a general directive to quantify 

uncertainty at this point. Therefore, the focus of task 4.5 was re-oriented; the partners worked on 

reviewing these heterogeneous sources of uncertainty and on assessing how these are considered 

and addressed in current research on biodiversity. The following three focal points were set: (1) The 

development of a conceptual framework integrating the existing sources of uncertainty that 

are linked to the modelling process to set a baseline for prioritisation and potential future 

quantification of uncertainty, which is based on the current state of recognition and incorporation of 

these sources. This also includes the identification of gaps in current data and methodologies 

leading to future improvements. (2) The development of coherent and straightforward tools and 

(statistical) methods to explicitly account for uncertainty in biodiversity models and to start 

closing the identified gaps. This task was approached in close collaboration with WP3 óImproving 

tools and methods for data analysis and interfaceô to utilize overlaps and synergies in both topics 

and involved partners. (3) As a perspective, we further provide some reflection on the main 

difficulties identified in the communication of uncertainties surrounding scientific results 

towards stakeholders and decision-makers of different levels. As this aim is a main objective of 

WP6 óStakeholder engagement and science-policy dialogueô, we here focus on the communication, 

and especially the visualisation of uncertainties directly stemming from biodiversity modelling 

rather than from interactions within realms at the interface of science and policy. 

Progress towards objectives 

A large body of existing literature deals with issues of uncertainties alongside the biodiversity 

modelling process, but there are only few attempts to integrate all sources of uncertainty in one 

conceptual framework. Additionally, the issue of quantifying those uncertainties is rarely addressed 

overall. This is insufficient while facing a constant increase in velocity of decision-making, 

especially concerning those decisions that target future environmental changes and societal 

developments.  

As a first point, we will briefly place the process of biodiversity modelling within the socio-political 

and socio-economic context, in which the need of clarification as well the formulation of research 

questions arise. Following, we will summarise the four essential sources of uncertainty in 

(biodiversity) modelling, i.e. 1) data ï both environmental and biological, (2) calibration  ï i.e. 

characteristics of the modelling process itself, (3) validation ï i.e. the process of testing the 

accuracy of the assigned models and (4) projections, and jointly integrate them into the conceptual 

framework. 
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As a next step, we will discuss the issue of propagation of uncertainty with increasing complexity 

alongside the modelling process and the current possibilities to actually quantify  those 

uncertainties. As a last point, we will discuss communication strategies (including visualisation 

of model uncertainty) to integrate the matter of uncertainties to the interface of scientist and 

decision-maker involvement as well as the overall process of informing conservation and 

management of biodiversity.  

Achievements and current status 

The deliverable follows the structure of the developed conceptual framework and aligns along the 

abovementioned sources of uncertainty. Thereby, the partners reviewed the aspects and implications 

of all these sources and developed tools to address these questions as illustrated by eight case 

studies supporting the reduction and/or incorporation of uncertainty in biodiversity and species 

distribution modelling. 

1) Concerning the availability and bias in biodiversity data as well as environmental predictors, 

there was a strong increase in publications during the last years in both, making data sets available 

and revealing gaps in data coverage. Nevertheless, it has to be noted that a sheer larger amount of 

available data does not readily translate to a greater knowledge. A stratified and non-random 

sampling that is congruent among countries and continents is necessary to systematically tackle 

questions in biodiversity research that then can inform management decisions and conservation 

action. 

Our ability to define relevant temporal baselines for biodiversity is still limited and this 

creates uncertainty especially due to the lack of knowledge about biodiversity states prior to 

the rise of harmful anthropogenic activities. Case study I  summarises an assessment of such 

temporal baselines based on European monitoring schemes. 

Case study II  gives an example on how to assess biodiversity metrics directly via satellite 

remote sensing to overcome limitations by deriving them from field observations. This case 

study comes with a ready-to-use open-source software implementation.   

Case study III  presents a statistical method for a scale-specific regression to assess the 

importance of several environmental variables on ecosystem processes at different spatial 

scales. 

2) Species distribution and other biodiversity models have experienced a documented strong rise 

and advancement, which is also true for accounting for uncertainty within the models. Nevertheless, 

there is still room for improvement, especially if more biodiversity data will be available in the 

future that will support the parameterisation of even more complex models.  

3) Using an appropriate accuracy measure is essential for assessing the prediction accuracy of 

biodiversity models. Still, accuracy measures undergo much less development and discussion than 

the previous sources of uncertainty.  

Case study IV introduces spatially corrected versions of current and commonly used 

accuracy measures that will contribute to evaluate prediction errors in presence/absence 

models, especially in case of medium or high degree of similarity of adjacent data, i.e. 

aggregated (clumped) or continuous species distributions. This case study comes with a 

ready-to-use open-source software implementation.   

4) Reporting uncertainty in projections provides confidence in model results that supports decision-

making in conservation-related recommendations and policies. Uncertainties, especially in the 
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future distributions of species render any decisions about where or how to implement conservation 

actions difficult and may increase expenses whenever large areas must be managed.  

Case study V takes an overall assessment of uncertainties surrounding different taxonomic 

freshwater groups, by applying different scenarios of climate and land-use change to data 

from the Rhine-Main-Observatory (EU BON) test site.   

Case study VI presents an overall assessment of the uncertainty of predictions using the 

AquaMaps framework.  

Whenever one takes the steps from the iterative procedure of data (collection), to modelling, 

measuring its accuracy and projection, uncertainty surrounding each of the corresponding 

techniques and approaches propagates through the whole process. This is generally true for an 

increase in complexity of modelling frameworks, as each parameter that has to be parameterised 

adds its own uncertainty to the model outcome. So far, complex models are often also surrounded 

by a high model uncertainty, as each inherent parameterisation is surrounded by uncertainty on its 

own.  

Case study VII presents a Bayesian modelling framework that explicitly accounts for bias 

due to different sampling effort and demonstrates (1) how to incorporate this information on 

uncertainty directly into a modelling framework and (2) how to propagate this uncertainty 

throughout the model. This case study comes with a ready-to-use open-source software 

implementation.   

Quantification of uncertainties alongside the modelling process is an elaborative, but yet inevitable 

task, if the ultimate goal is to inform the scientific community, stakeholders and the general public. 

At the moment, quantification often means assessing the importance of each of the beforementioned 

sources of uncertainty, by having several ótreatmentsô for each group. 

Case study VIII is an example at the forefront of quantification of uncertainty in 

habitat/land-cover classification models or species distribution models in a general way for 

future assessments.  

Science-policy audiences are highly diverse and often receive information that differs in both 

quantity and quality compared to what science typically provides. Strategies of communication, i.e. 

which information are inevitable to the audience and how can they be best communicated, change 

with the addressed audience. 

Future developments 

Reporting uncertainties alongside each step of biodiversity modelling is essential and should be the 

golden standard within and outside the scientific community. An uncertainty assessment should be 

one of the preliminary steps in any related decision-making process, such as actions based on 

biodiversity modelling results or the delineation of a biodiversity conservation area. Therefore, 

conservation planners should identify uncertainties in the planning process and, when necessary, 

evaluate the sensitivity of conservation planning outcomes to the different sources of uncertainty. 

Additionally, identified uncertainties may require further targeted monitoring to incorporate them 

into the management development process. This deliverable aims at creating awareness for 

discussion and integration of model uncertainty among all parties involved in informing and 

developing key decisions in biodiversity conservation and management.  

Among biodiversity modelling procedures, species distribution modelss are standard and essential 

tools for understanding factors that affect species geographical ranges and for predicting their 

response to current and future global changes and have already substantially improved during the 
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last decades. Although species distribution models are strongly established in informing 

management and conservation decisions, raising the awareness regarding sources of uncertainty and 

the development of new methods to directly incorporate uncertainty at different levels of the 

modelling process will finally improve the communication of uncertainties surrounding each 

scientific result. This will then support a higher level of information concerning these decisions and 

lead to a higher acceptance among stakeholders and decision-makers, as well as lastly within the 

general public.  

After summarising the current state and limitations of this field, we will be able to further improve 

tools and methods to account for uncertainty in future biodiversity modelling. In this respect, 

several activities are at different stages of advancement, from already initiated to well-advanced. 
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1. General Introduction 

Biodiversity is a multidimensional cluster concept and uncertainties are inherent to many of the 

dimensions of the research surrounding it. The recent rapid and ubiquitous environmental changes 

require close exchange between knowledge holders, decisionmakers and policymakers to inform 

and support key decisions on the management of biodiversity and natural resources. This is of 

particular importance when considering that ongoing and future changes in the Anthropocene 

(Steffen et al. 2007, Ellis & Ramankutty 2008, Sarrazin & Lecomte 2016) will possibly result in 

novel conditions and complex dynamics, so that recommendations and predictions will remain 

embedded within an unprecedented level of uncertainty in a future with no current analogues. 

Specifications are needed as to what, precisely, is uncertain, what is the reason for uncertainty and 

whether this uncertainty matters (Funtowicz & Ravetz 1990, Haila & Henle 2014); specifications 

and in-depth analyses that recent assessments (e.g. MA - Millenium Ecosystem Assessment 2005, 

Rio+20 ï Cardinale et al. 2012, Ehrlich et al. 2012) in biodiversity science were lacking.   

Already in 1921, Knight links measurable (thus quantifiable) uncertainties directly to the notion of 

risk and the probability for a phenomenon to occur, going as far as almost synonymizing the notions 

measurable uncertainties and risk. So called unmeasurable uncertainties are doubted to be actually 

ucertainties at all and associated later with the notion of the ñunknownò. Ritholtz (2012) warns 

against the unconsidered synonymous use of the terms risk and uncertainty both in science and in 

the media, because it can be misleading for decision-makers. Following the German psychologist 

Gerd Gigerenzer (Director of the Center for Adaptive Behavior and Cognition (ABC) at the Max 

Planck Institute for Human Development) both terms have to be distinguished (Ramnath 2017): 

 

risk: You are dealing with risk when you know all the alternatives, outcomes and their 

probabilities. 

 

uncertainty: You are dealing with uncertainty when you donôt know all the alternatives, 

outcomes or their probabilities.  

    

 

Uncertainty has always surrounded and will always surround human decision-making processes and 

has been one of the main drivers of scientific development (Funtowicz & Ravetz 1990, Peôer et al. 

2014). Three major categories of uncertainties can be classified (Walker et al. 2003, Howell et al. 

2013): inexactness (technical uncertainty), unreliability (methodological uncertainty) and ñborder 

with ignoranceò (epistemic uncertainty). The latter is seen as most problematic, especially in 

predictive biodiversity modelling, as it lacks data to make it quantifiable. Despite the efforts done 

and the number of parameters measured, there will always be a part of unexplained uncertainty in 

each model and result; citing Donald Rumsfeldôs famous quote (12
th
 of February 2012): 

óThere are known knowns; there are things we know we know. We also know there are 

known unknowns, that is to say we know there are some things we do not know. But there 

are also unknown unknowns, the ones we donôt know we donôt know.ô  

 

The latter, inherent and unquantifiable uncertainty has a proven impact on the outcomes of models 

(Regan et al. 2002, Walker et al. 2003) but should not prevent good science to happen (Peôer et al. 

2014). Both scientists and decision makers have to accept that uncertainty is systematically 

underestimated and that obtained results only represent a subset of total uncertainty that may be 

quantifiable. Reducing or avoiding uncertainty has been traditionally targeted in science and 

decision making issues, but uncertainty will never be completely reducible. Therefore, we stress 

https://en.wikipedia.org/wiki/Max_Planck_Institute_for_Human_Development
https://en.wikipedia.org/wiki/Max_Planck_Institute_for_Human_Development
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that one should rather embrace it than trying to avoid it (Haila & Henle 2014). As critical aspects of 

interpreting and transferring scientific outcomes rely on uncertainty, a careful communication of the 

uncertainties involved with any analysis or projection into the future as well as the usage of exact, 

agreed-upon definitions of concepts and terms is needed (linguistic uncertainty; Regan et al. 2002, 

Kujala et al. 2013). To reduce such linguistic uncertainty within the framework of the present 

deliverable, we provide a glossary of important terms that are used throughout the document (see 

glossary box at the end of this introduction). 

For these reasons, WP4 designed a separate task on uncertainties in biodiversity distribution and 

trend assessments. Here, we aim at classifying the different sources of uncertainty when assessing 

current and future trends in distribution and abundance of species. We focus on quantifiable sources 

of uncertainty but will also reflect on unquantifiable ones that are relevant for management or 

decision-making. We will consider the propagation of uncertainty in hierarchical models or series of 

combined models and sketch the potential to quantify uncertainty. We will use results from our own 

research within WP4 as case studies and complement them with existing literature to provide expert 

judgement on the (relative) importance of each source of uncertainty as guidance for handling them 

in research, management, and decision-making. Lastly, we provide some reflections on how to 

communicate uncertainty to peers and to stakeholders, including verbal, numerical and graphical 

means.    

At this point it has to be explicitly embraced that the process of biodiversity modelling is 

fundamentally coupled with and embedded in its socio-economic context and furthermore an 

integral part of the iterative cycle of science (Figure 1.1; Schmolke et al. 2010). Biodiversity 

models hold the strong potential of supporting recommendations and limitations regarding the 

entities they model, which potentially lead on guiding further scientific and societal actions such as 

experimental, monitoring and/or conservation efforts. Those efforts then lead to a process of 

collective learning and the direction of further research, which again lead to the ermergence of new 

problems and research questions, which are addressed by biodiversity modelling. Addison et al. 

(2013) summarise practical solutions to make those models visible and valuable for decision-

makers. In doing so, they identify common objectives to the use of models in decision-making. 

More importantly, they call for (1) modellers to involve decision-makers and stakeholders 

throughtout the modelling process and (2) decision-makers to involve modellers early on in the 

process of problem formulation to jointly promote mutual understanding of the underlying 

perspectives and concepts. Note that these challenges are in line with the aim of improving science-

policy interface, which is also actively pursued by WP8 ñDissemination and outreach of EU BON 

activitiesò. 

Task 4.5 is predominantly focused on the development of tools and methods to assess and 

incorporate uncertainty into frameworks of biodiversity modelling. Therefore, the socio-economic 

realm of collective decision-making shall not be the major topic of this Deliverable. Nevertheless, it 

is important to acknowledge that the process of biodiversity modelling is never detached from other 

scientific components, policy- and decision-making or the general public. Concluding, this is also a 

call for biodiversity researchers at any level to engage in theory and practice of decision sciences 

(Polasky et al. 2011, Beale & Lennon 2012).
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Figure 1.1: Conceptual framework illustrating the biodiversity modelling process within the iterative cycle of general decision-making processes in 

the socio-political/economic realm. 
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Figure 1.2: Conceptual framework integrating the sources of uncertainty surrounding the biodiversity modelling process as well as the process of 

prioritisation and communication of uncertainties originating from such analyses. 
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GLOSSARY BOX  

Uncertainty:  Uncertainty is the absence or inadequacy of knowledge regarding the description of a 

current state or future outcome and the absence of knowledge regarding probabilities of one or more 

possible future outcomes. In this context, it refers specifically to the uncertainty of input and output 

state and process variables of models. 

Uncertainty can be subdivided into technical uncertainty (inexactness), methodological uncertainty 

(unreliability), and epistemic uncertainty (ñborder with ignoranceò). Whereas the first two can be 

represented as quantifiable errors, the latter often lacks data and is characterised by qualitative 

statements at the most. 

Funtowicz S., Ravetz J. (1990). Uncertainty and quality in science for policy. Kluwer, Dordrecht. 

Regan H. M., Colyvan M., Burgman M. A. (2002). A taxonomy and treatment of uncertainty for ecology 

and conservation biology. Ecological Applications 12: 618-628.  

Walker W. E. et al. (2003). Defining uncertainty ï a conceptual basis for uncertainty management in 

model-based decision support. Integrated Assessment 4: 5-17. 

Refsgaard J. C., can der Sluijs J. P., Hojberg A. L., Vanrolleghem P. A. (2007). Uncertainty in the 

environmental modelling process ï a framework and guidance. Environmental Modelling & Software 22: 

1543-1566.  

Kujala H., Burgman M. A., Moilanen A. (2013). Treatment of uncertainty in conservation under climate 

change. Conservation Letters 6: 73-85. 

Haila Y., Henle, K. (2014). Uncertainty in biodiversity science, policy and management: a conceptual 

overview. Nature Conservation 8: 27-43. 

 

Risk: Risk results from the absence or inadequacy of knowledge regarding the description of a 

future outcome. It can be formalized as the probability of a possible future outcome times its impact 

(severeness).  

 

Prediction: A prediction is a statement about the future that is purely based on a set of quantities 

derived from a statistical model and its inherent assumptions, without using further assumptions, 

e.g. concerning future environmental and socio-economic developments. Predictions are based on 

data and evidence and are therefore less broad than projections or scenarios, often address a smaller 

scale or shorter time period, but involve a lesser degree of uncertainty at the same time. Frequently, 

though, the term ñpredictionò is used when ñprojectionò is meant. 

Dormann C. F., et al. (2008a). Prediction uncertainty of environmental change effects on temperate 

European biodiversity. Ecology Letters 11: 235-244. 

Buisson L., Thuiller W., Casajus N., Lek S., Grenouillet G. (2010). Uncertainty in ensemble forecasting 

of species distribution. Global Change Biology 16: 1145-1157.  

Evans M. R. et al. (2013a). Predictive Systems Ecology. Proceedings of the Royal Society B.  

Guisan A. et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters 16: 

1424-1435 
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Projection: A projection is a statement about the potential future of a quantity or set of quantities, 

often derived from a statistical model. In contrast to predictions, projections involve assumptions 

beyond modelling, e.g. concerning future environmental and socio-economic developments, that 

may or may not be realised. Projections may be the raw material for scenarios.  

IPCC glossary: https://www.ipcc.ch/pdf/glossary/tar-ipcc-terms-en.pdf 

 

Keyfitz N. (1972) On Future Population. Journal of the American Statistical Association 67: 347-363 

Singer A. et al. (2016). Community dynamics under environmental change: How can next generation 

mechanistic models improve projections of species distributions? Ecological Modelling 326: 63-74. 

 

 

Scenario:  A scenario is a synopsis of a plausible sequence of possible future actions, events or 

developments. It is a qualitative, often simplified set of assumptions about key driving forces and 

their relationships to support thinking about the future. A set of scenarios depicts different 

interpretations of the current situation (baseline) and illustrates as well as compares alternative 

pathways of uncertain environmental and socio-economic developments and their diverging 

consequences related to biodiversity.  

 
Zurek M. B., Henrichs T. (2007). Linking scenarios across geographical scales in international 

environmental assessments. Technological Forecasting and Social Change 74: 1282-1295. 

 

Spangenberg J. H. et al. (2012). Scenarios for investigating risk to biodiversity. Global Ecology and 

Biogeography 21: 5-18.  

 

 

Validation : Validation is a process of assessing whether a value of a data item derived from a 

statistical technique is accurately predicted, i.e. it comes from a given set of defined and acceptable 

values. It is a test of correctness, completeness, intentional implementation and structural 

plausibility. 

Rykiel, E. J. (1996). Testing ecological models: the meaning of validation. Ecological Modelling 90: 229-

244. 

 

 

 

https://www.ipcc.ch/pdf/glossary/tar-ipcc-terms-en.pdf
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2. Sources of uncertainty 

Spatial, temporal and taxonomic information related to species occurrences is at the core of 

modelling biodiversity data and is at present predominantly conducted via species 

distribution models (SDMs; also called niche or habitat suitability models) that assess the 

relationship between species ranges and potential changes of these ranges as a response to 

different factors (Elith et al. 2006, Dormann et al. 2008a). Therefore, SDMs act as the major 

source informing decisions on management and conservation of biodiversity. SDMs are 

typically based on several assumptions that simplify the biological reality and/or help to 

satisfy statistical presumptions. Those assumptions occur at any step of the modelling 

process, starting with raw data and ending with potential projections to distant, non-

analogous spaces or futures and therefore, each of these steps contributes to the emergence 

of uncertainties while modelling biodiversity (Dormann et al. 2008b). Thereby, uncertainty 

propagates throughout the modelling process (Guillera-Arroita et al. 2015) and substantially 

influences the decision-making process that may be derived from it. 

Awareness of different sources of uncertainty in the described modelling process is essential 

for an unbiased and strong transfer of scientific results to inform decision-makers and 

stakeholders. In the following, we will characterise all potential sources of uncertainty 

(Figure 1.2): 1) data ï both environmental and biological, (2) calibration ï i.e. characteristics 

of the modelling process itself, (3) validation ï i.e. the process of testing the accuracy of the 

assigned models and (4) projections, and integrate them in a joint conceptual framework. We 

summarise the current state of awareness for each of these sourcesô uncertainties within the 

scientific community and the current developments of methods to directly account for the 

diverse set of uncertainties while modelling biodiversity.  

2.1 Data 

The societal and scientific interest in understanding patterns and processes of biodiversity loss 

and changes in species ranges at larger scales (from regional to country to European and up to 

global scale) fundamentally increased during the past decades, as more and more processes 

such as climate and land-use change, habitat fragmentation, urbanisation and the introduction 

of alien species were found to (inter)act at these scales (Sala et al. 2000, Ellis & Ramankutty 

2008, IPCC 2013). At the same time, new technologies and global initiatives have produced 

and consolidated a huge amount of data and the analyses of these processes were highly 

promoted by the availability of large European and global data sets (species distribution 

data/biodiversity inventories, e.g., GBIF - Edwards 2000, Map of Life ï Jetz et al. 2012, Atlas 

of European Breeding Birds - Hagemeijer and Blair, 1997, Atlas Florae Europaeae - Lahti and 

Lampinen, 1999; trait data, e.g., TRY - Kattge et al., 2011; climate data, e.g., CliMond - 

Kriticos et al., 2012). Currently, we are living in an age, in which the term óbig dataô is 

established in both scientific and non-scientific realms and scientists most certainly face the 

biggest information availability of all times (Kelling et al. 2009, Hampton et al. 2013). This 

was made possible due to a strong progress in digitalisation of biodiversity data and the 

development of data standards (Guralnick et al. 2007) as well as an increased effort in 

utilising citizen science initiatives (Bell et al. 2008, Dickinson et al. 2012).  

 

Despite these advances, global biodiversity data are generally incomplete and still biased in 

many ways (for comprehensive reviews see Hortal et al. 2015, Meyer 2016 and Meyer et al. 

2016a) and the scientific community faces the urgent question on how to distribute resources 

to balance those biases, to decide where to invest in monitoring infrastructure and which 

biodiversity units to monitor. There is still insufficient consistency among national or regional 

monitoring and sharing of biodiversity data (Pereira et al. 2013). Those gaps have to be filled 
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systematically and biases have to be explicitly addressed to ensure indisputable management 

strategies and policies in biodiversity conservation. Nevertheless, it is important to note that 

although it is a crucial intention to increase data availability for the purpose of analysing 

biodiversity responses to global change, the mere increase of data availability is no guarantee 

for a likewise increase in knowledge, as available data, no matter how detailed, will always 

have an inevitable component of uncertainty (no matter of which of the below-mentioned 

sources). Therefore, next to taking the effort of a systematic observation and collection of 

biodiversity entities that needs to encompass local, national, regional and global scales 

(Pereira et al. 2013), there is also a strong need to explicitly account for data biases and 

limitations in existing and future modelling frameworks (Meyer 2016; Meyer et al. 2016a, 

2016b). 

This section will state the potential biases that have to be taken into account, whenever data 

are used for biodiversity modelling. We distinguish between (1) biological variables, which 

are the response of biodiversity models and usually a species or taxa (but also traits or 

community compositions) of certain interest and (2) environmental variables, which are used 

as predictors in biodiversity models ï as both parts of available data face different difficulties 

in processing. Overall, data is the source of uncertainty, for which the largest body of 

literature investigating the effect of its surrounding uncertainty has been assessed. We will 

summarise important components of this source of uncertainty in the following, especially as 

relatively new approaches such as the comprehensive use of remote sensing and the 

conceptualisation of Essential Biodiversity Variables (EBVs) are recent advances in this 

realm.  

2.1.1 Biological response 

A large body of literature assessing the uncertainties surrounding biological response data 

exists and comprehensive reviews and assessments have been published recently (Hortal et al. 

2015; Meyer 2016, Meyer et al. 2015, 2016a). Those authors thoroughly discuss the several 

shortfalls in the current state of biodiversity knowledge and make this source of uncertainty in 

biological modelling one of the best documented. There are various reasons for the limitation 

of data accessibility, which often are uncorrelated and dominant in different regions in Europe 

and of the world (Meyer et al. 2015). New data can and should be generated by establishing 

straightforward and unifying biodiversity monitoring schemes to close critical data gaps as 

well as by the integration of already existing, still non-digitalised data in museums and other 

collections, by making the best use of data derived from ecological field studies and by 

utilising satellite remote sensing techniques (Proença et al. 2016).  

Most niche-based models are based on species occurrence data, by either using 

presence/absence or presence-only data. Raw occurrence data arising from recorded presences 

of species are usually gathered in monitoring schemes, museums, herbaria, field surveys or 

volunteer observation networks (Graham et al. 2004; Dickinson et al. 2010, 2012). While 

these data are increasingly used to generate species distribution maps, they come along with 

various kinds of uncertainties (Rocchini et al. 2011). Uncertainty may arise from differences 

in sampling protocols and design, the lack of systematic or exhaustive surveys and failure to 

report absences (Yoccoz et al. 2001). Guillera-Arroita et al. (2015) summarise three 

probabilities that influence the chance of recording a species at a particular site: (1) the 

probability that a species occupies the site, (2) the probability that the site is sampled and (3) 

the probability that the species is detected given that it is present. If the detection of species is 

imperfect, which is predominantly the case even for immobile species (Garrard et al. 2008, 

Chen et al. 2013), SDMs are confounded and rather estimate the likelihood of a species being 

observed rather than being present. Speciesô detection probabilities may vary across habitats 
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and create false absences, if  absences are reported at all (Tyre et al. 2003, MacKenzie et al. 

2006, Chen et al. 2013), and/or false positives due to misidentification (Miller et al. 2011, 

Chambert et al. 2015). In addition, specific occurrences or observations are more certain than 

others (e.g. recording a birdôs nest > a birdôs song > a birdôs sight).  

The inherent complexity and dynamics of species distributions are reflected in the quality of 

the available data (Jiguet et al. 2005; Dormann et al. 2008b; Elith & Graham 2009; Rocchini 

et al. 2011); considering species abundance data that are essential for understanding 

population dynamics, they are generally rather scarce. These shortfalls in data availability 

finally affect estmates of minimum viable populations (Reed et al. 2003), once again 

highlighting the crucial importance of structures promoting long-term monitoring of 

population trends (Hortal et al. 2015). 

Attempts exist to combine the efforts underlying the existing data sets into an informative 

distribution map (Jetz et al. 2012), but available maps are still predominantly biased presence-

only maps and the harmonisation of and collection of unbiased data remains an important 

challenge for the future. 

Spatial uncertainty 

Despite those efforts, biodiversity data are still rarely collected in a stratified and regular 

manner, but predominantly arise from random sampling that is opportunistic and spatially 

biased (Albert et al. 2010, Guillera-Arroita et al. 2015). If the spatial varation in sampling 

effort corresponds to the spatial varation in environmental data (e.g. due to differences in 

detectability per habitat), this might generally lead to misleading estimates of speciesô actual 

and potential ranges (Loiselle et al. 2008, Beale & Lennon 2012).  

Different localities obtain different data qualities, which results in different, spatially 

structured (and therefore biased) quality of biological response data (Boakes et al. 2010, 

Rocchini et al. 2011, Yang et al. 2013, Hortal et al. 2015, Meyer et al. 2015). This spatial bias 

or spatial uncertainty may moreover arise from different reasons: some areas are better 

mapped than others and are spatially biased in this regard (Manceur & Kühn 2014, 

Kuemmerlen et al. 2016), which increases uncertainty and decreases predictive power of 

biodiversity models. This might be due to differences in sampling effort and mapping 

schemes in these localities (Albert et al. 2010), which might in turn be a result of differences 

in the overall socio-economic status (Amano & Sutherland 2013; Meyer 2016; Meyer et al. 

2016a), differences in scientific infrastructures (e.g. the density of institutes or the proximity 

to the next research centre; Moerman & Estabrook 2006) and/or the simple accessibility of 

certain areas (e.g. via roads; Barve et al. 2011). This leads to the fact that countries with 

weaker positions regarding these measures are often those with highest biodiversity (Amano 

& Sutherland 2013). 

The great majority of occurrence data, although increasingly available freely and in a digital 

way, furthermore carry uncertainty in their geographical locations (Naimi et al. 2011). 

Location uncertainty arises from various factors, including inaccuracy in the measurement of 

location, failure to specify the geographic datum, errors in geo-referencing, and operator 

errors (Graham et al. 2004; Naimi et al. 2011). Recent studies have addressed the impact of 

positional errors in species occurrences on the accuracy of SDMs (Naimi et al. 2011). Graham 

et al. (2008) explored whether positional error in species occurrence data influenced SDM 

performance, and they compared various models in this respect. They concluded that common 

modelling techniques (see 2. 2. Model calibration: model types and procedures) are 

particularly robust to a moderate level of positional error. Those techniques would allow 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2011.02523.x/full#b26
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2011.02523.x/full#b26
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useful predictions of species distributions even when occurrence data are not free of sampling 

errors (Graham et al. 2008; Naimi et al. 2011).  

The spatial context of species presences (and absences) in SDMs additionally has to be 

considered from a statistical point of view to avoid misinterpretations, as typically spatially 

organised biodiversity data are often spatially autocorrelated, i.e. adjacent locations or data 

points share more similar values than distant ones (Dormann et al. 2007, Kühn & Dormann 

2012). If this pattern propagates to the residuals of a model, one of the key assumptions of 

standard statistical analyses, i.e. that residuals are independent from each other identically 

distributed, is violated. This violation in turn might lead to biases in model parameter 

estimation. If the presence of spatial autocorrelation is detected in model residuals (e.g. using 

Moranôs I, or Gearyôs C), it is therefore strongly recommended to use methods that account 

for this phenomenon. Otherwise there is a high chance of misinterpreting observed and 

detected patterns (Kühn 2007).  

Temporal uncertainty 

Under the current rate of global change, successful biodiversity conservation and management 

increasingly depends on a meaningful comparison among recent and historic conditions 

(Barnosky et al. 2017). In contrast to spatial biases, where baselines to inform conservation 

strategies are identified more commonly, such baselines are predominantly missing for 

temporal uncertainty, i.e. it is uncertain which changes and progresses about which time 

frames have to be evaluated. Lacking such temporal baselines is a major source of uncertainty 

while implementing effective biodiversity conservation strategies (Mihoub et al. 2017, see 

Case Study I). Moreover, predictions of biodiversity trends will substantially benefit from 

such baselines; one of the major calls of Deliverable 4.2 óReport on projections of range and 

biodiversity changes using improved European data sourcesô. Within the scope of this 

deliverable, UFZ followed up on this topic and assessed the beginning and temporal 

consistency of European monitoring schemes over time.  

 

Case study I : Setting temporal baselines for biodiversity: the limits of 

available monitoring data for capturing the full impact of anthropogenic 

pressures 

 
Partners involved: UFZ (Jean-Baptiste Mihoub, Klaus Henle, Dirk Schmeller), EBCC-

CTFC (Nicolas Titeux, Lluis Brotons), NHM (Neil A. Brummitt).  

ü For more details, see: Annex 7.1 

ü For the original paper, see: J.-B. Mihoub, K. Henle, N. Titeux, L. Brotons, N. A. 

Brummitt and D.S. Schmeller. Setting temporal baselines for biodiversity: the limits of 

available monitoring data for capturing the full impact of anthropogenic pressures. 

2017. Scientific Reports 7: 41591. 

 

a) Context 

Our ability to define relevant temporal baselines for biodiversity is still limited. Nonetheless, 

temporal baselines are needed for biodiversity, in order for the change in biodiversity to be 

measured over time, the targets for biodiversity conservation to be defined and conservation 

to be implemented and evaluated. In this respect, the lack of knowledge about biodiversity 
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states prior to the rise of harmful anthropogenic activities is a critical limitation for our 

understanding of the full impact of such pressures as well as of past and therefore current 

changes. 

 

b) Concept / Objective 

Most structured biodiversity monitoring schemes have been initiated within the last few 

decades, whereas most of the anthropogenic pressures that are currently impacting 

biodiversity have been operating over centuries or even millennia. Although the limitations of 

biodiversity information available from monitoring schemes are widely recognized, a 

comprehensive and quantitative evaluation of the potential of monitoring schemes to identify 

temporal baselines capturing the impacts of major anthropogenic pressures on biodiversity is 

still lacking. We conducted a quantitative evaluation of the temporal baselines that could be 

identified using comprehensive information on biodiversity monitoring schemes sourced from 

several meta-databases.  

 

c) Data and methods 

We focus on Europe as one of the regions of the world with the oldest and most intensive 

biodiversity monitoring efforts. We report the start of European biodiversity monitoring 

schemes to examine the possibilities offered by available data for documenting past states of 

biodiversity with respect to different (i) taxonomic groups, (ii) EBV classes and (iii) types of 

data collected. Then, we compare the onset of biodiversity monitoring schemes with historical 

time-series or reconstructions of the main anthropogenic pressures that are currently acting on 

biodiversity at global or regional scales.  

For each taxonomic group studied, type of data collected and EBV class targeted, we 

calculated descriptive metrics of the temporal baseline that could be drawn for biodiversity 

based on the starting year of the biodiversity monitoring schemes in Europe. We then 

compared the start of biodiversity monitoring schemes with global or regional long-term time-

series reflecting the major anthropogenic pressures that are known to impact biodiversity the 

most.  

 

We first identified the value of the pressure pi corresponding to the starting year of each 

scheme i by projecting the intersect between the starting year of the scheme i and the 

regression trend of the pressure on the pressure axis. We then determined the level of pressure 

reached at that time, expressed as the percentage of the pressure range already reached when 

the schemes started, as follows:  

 

% pressure range reached = medP ī minP/rangP 

 

where the medP is the median of all pi, minP is the minimum value of the pressure over time 

and rangP is the known range of that pressure, which was calculated as the difference between 

the maximum and minimum values of the pressure along the time-series. 

 

d) Main results 

 

Most of the major anthropogenic pressures that are known to impact biodiversity began 

hundreds of years earlier than the start of biodiversity monitoring schemes (Figure 2.1). More 

importantly, anthropogenic pressures started to escalate exponentially from the beginning or 

the middle of the 20th century, while the vast majority of biodiversity monitoring schemes 
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started only after these pressures had already reached more than half of their present-day 

order of magnitude or had already peaked and decreased.  

 

Setting temporal baselines from biodiversity monitoring data would therefore underestimate 

the full range of impacts of major anthropogenic pressures. In addition, biases among taxa and 

organization levels provide a truncated picture of biodiversity over time. In terms of median 

starting dates, birds and fishes are the focus of the oldest schemes, whereas schemes focusing 

on amphibians, molluscs, plants and reptiles are more recent (approximately a decade later).  

Comparisons of starting years among EBV classes and types of data collected were only 

possible for a reduced set of monitoring schemes. The overall picture of the start of 

monitoring schemes dating back to the mid 1990ôs is consistent with the findings resulting 

from all databases previously found for the taxonomic groups. 

e) Conclusion & Implications for considering uncertainties in biodiversity modelling  

We demonstrate that most of the data currently available from European biodiversity 

monitoring schemes have been collected from the 1950ôs onwards, i.e. long after modern 

anthropogenic pressures might have started to impact species populations and communities. 

These limitations need to be explicitly acknowledged when designing management strategies 

and policies as they seriously constrain our ability to identify relevant conservation targets 

aimed at restoring or reversing biodiversity losses.  

 

We argue that information derived solely from current biodiversity monitoring schemes is not 

well suited to setting relevant temporal baselines. To face this important challenge, we 

encourage both scientists and policy-makers to adopt a more conservative attitude toward 

temporal baselines for biodiversity by explicitly recognizing the uncertainties associated with 

current limitations. This implies acknowledging limits to our ability to document past 

biodiversity states from monitoring schemes, and that the changes measured from these 

schemes may seriously underestimate the full impact that major anthropogenic pressures have 

had on biodiversity. A consistent integration of fragmentary information across disciplines are 

critical if we are to set temporal baselines for biodiversity that reflect past states of 

biodiversity before the rise of major anthropogenic pressures. 
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Figure 2.1: Temporal mismatch between biodiversity monitoring schemes in Europe and 

major global or regional anthropogenic pressures known to impact biodiversity. The onset of 

biodiversity monitoring is represented using the median value (vertical red line) and the first 

and third quartiles (light red area) of the starting years of biodiversity monitoring schemes. 

Major pressures include (a) climate: global temperature anomalies and European 

atmospheric concentrations of carbon dioxide, (b) global anthropogenic nitrogen and 

phosphorus, (c) global human population sizes and global land use changes and (d) pollutant 

emissions in the United Kingdom (UK). 
 

Taxonomic uncertainty 

Different taxonomic groups respond differently to environmental drivers (inter-taxon 

differences; Mora et al. 2008, Meyer et al. 2015, Meyer 2016, Kuemmerlen et al. 2016 Ą 

case study VI ). Therefore, it is of crucial importance that we drive efforts to harmonise data 

quality between different taxonomic groups. Typically, plants, butterflies, mammals and birds 

are the most prominently investigated groups, as they historically hold the highest information 

density at least in Europe, due to long-lasting scientific and public interest. Nevertheless, 

assessing the status of óless popularô taxonomic groups will lead to a full understanding of 

biodiversity and ecosystem change over space and time. Until then, a lower availability of 

information will continuily result in a smaller feed of information into the modelling process 

and finally in a shortfall regarding the prediction of future changes in biodiversity entities. 

This is of special importance, when you consider that groups of species do not act 

independently of each other, but are tied in numerous interactions, which will be altered when 

changes in biodiversity occur. Striving for a more complete data coverage across taxonomic 

groups will enhance our understanding in this regard.  
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As a second point, also subspecies and populations can respond differently to environmental 

drivers (intra-taxon differences). Therefore, uncertainties and errors arising from inconsistent 

usage of taxonomic classification and/or falsely conducted identifications (Jansen & Dengler 

2010, Ahrends et al. 2011) will lead to biased and potentially misleading implications that 

inform management and conservation decisions.  

Insights from Remote Sensing in mitigating uncertainty 

Satellite remote sensing can deliver long-term data sets with an extremely high sampling 

frequency as well as an extensive geographic coverage (Pettorelli 2014, Skidmore et al. 2015, 

Proença et al. 2016). Whereas remote sensing has already been established as a powerful tool 

to gain global information on environmental predictors, it becomes increasingly common and 

approved in the direction of biological response variables (Schimel et al. 2013, Skidmore et 

al. 2015, Pettorelli et al. 2016, Rocchini et al. 2017) as a time and cost effective way for 

providing explicit maps of species distributions. Therefore, remote sensing  acts as a key tool 

for deriving spatially explicit ancillary variables, such as climate-related drivers or biomass 

estimates (Feilhauer et al. 2011). Meaningful information derived from remote sensing might 

also be based on the classification of remotely sensed satellite or airborne multi- or hyper-

spectral images to create habitat maps, which are related to species distributions.  

Mapping and modelling the complexity of ecosystems and their changes over time is a key 

issue in spatial ecology and biogeography. Evidence exists that abrupt classification of 

vegetation types, especially at the species level, can present misleading or even erroneous 

results (Schmidtlein & Sassin 2004). Usually, vegetation assemblages show changes along 

environmental gradients (e.g., moisture or soil type) and therefore transitions are normally not 

abrupt. Alternative approaches like ordination methods aim to extract major floristic gradients 

describing the variation of the assemblages as metric variables, thus still retaining the 

continuous character of the data (Schmidtlein & Sassin 2004). Gradients can be related to any 

sort of remote sensing data using regression approaches, such as generalized linear models or 

partial least square regression (Feilhauer et al. 2011).  

Regardless of the method being used, but also true for (satellite) remote sensing techniques, 

the assumptions for carrying out classification are associated with one major drawback: 

classes are mutually exclusive and have discrete boundaries separating each other. Hence, 

processing and classifying images can result in a substantial loss of information, due to the 

degradation of continuous quantitative information into discrete classes (Palmer et al. 2002; 

Foody & Cutler 2003). Classification can implicitly degrade information and increase 

uncertainty in the data and related outcomes. The uncertainty related to the classification 

process often remains hidden in the output maps, thus it cannot be readily accounted for. In 

other words, the error produced during the classification process is not accounted for in the 

output. From that, two sources of uncertainty can be defined in the classification of remote 

sensing data; (i) vagueness, namely the lack of sharpness of relevant distinctions, and (ii) 

ambiguity, arising from conflicting distinctions (discordance; Klir & Wierman 1999, Rocchini 

& Ricotta 2007).  

It has to be noted that remote sensing information on the distribution of species and other 

entities of biodiversity modelling provides not only valuable information on their current 

association with different environments, but this information may serve as a baseline for 

conditions that will exceed the assessed steady-state conditions (Schimel et al. 2013). As the 

rate of environmental change is high and will lead to new combinations of environmental 

conditions it is of upmost importance to gain information on such baselines as soon as 

possible (Schimel et al. 2013). Therefore, a current additional challenge is to link remote 
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sensing data to local observations, to finally upscale those measures by generating models on 

ecosystem processes (GEO BON 2015, Proença et al. 2016) and potentially Essential 

Biodiversity Variables (Skidmore et al. 2015, Pettorelli et al. 2016). 

The following case study by FEM gives an example on how biodiversity metrics can be 

assessed directly via satellite remote sensing to overcome limitations by directly deriving 

them from field observation (Case Study II). In Detail, FEM introduces an R package to 

apply Raoôs Q to remotely sensed data to furthermore overcome limitations of commonly 

used diversity metrics.  

 

Case Study II : Measuring Rao's Q diversity index from remote sensing: An 

open source solution  

 
Partners involved: FEM (Duccio Rocchini) 

+External Partners:  

Technische Universität Berlin, Department of Landscape Architecture and Environmental 

Planning, Geoinformation in Environmental Planning Lab, Berlin, Germany (Matteo 

Marcantonio) 

Department of Environmental Biology, University of Rome ñLa Sapienzaò, 00185 Rome, 

Italy (Carlo Ricotta) 

 

ü For more details, see: Annex 7.2 

ü For the original paper, see: Rocchini D., Marcantonio M., and C. Ricotta. 2017. 

Measuring Rao's Q diversity index from remote sensing: An open source solution. 

Ecological Indicators 72: 234-238. 

 

(a) Context 

 

Estimating biodiversity from field data presents a number of drawbacks mainly related to time 

and costs, together with intrinsic difficulties to build standardised procedures for reproducible 

data gathering (Palmer et al. 2002). 

It has been demonstrated that the measure being used can lead to very different (and 

sometimes misleading) results. As an example, one of the mostly used diversity measures of 

the landscape based on spectral remotely sensed data, i.e. the Shannonôs entropy (Shannon 

1948), has a number of implicit drawbacks like: i) the difficulty to discriminate between 

differences in richness or relative abundance (Nagendra 2002) or ii) the impossibility to 

consider spectral values as numbers instead of classes (Rocchini & Neteler 2012a). 

Concerning the second point, Shannonôs entropy accounts for richness and relative abundance 

of spectral values but it does not explicitly consider the numerical magnitude (values) of 

pixels. 

(b) Concept / Objective 

On the contrary, Raoôs Q index (Rao 1982) does take into account i and j value by 

considering their pairwaise distance dij:  
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The aim of this part of the Deliverable is to solve the aforementioned issue, by the application 

of Raoôs Q to remotely sensed data in an open source environment (e.g. Rocchini & Neteler 

2012b), providing a straightforward R function to calculate it in 2D systems. As far as we 

know, this is the first attempt to measure Raoôs Q in a 2D space applied to remotely sensed 

data. 

(c) Data and methods 

The function spectralrao() to derive Raoôs Q, written in the R statistical language (R Core 

Team 2016), is stored in the GitHub repository https://github.com/mattmar/spectralrao. The 

function accepts matrix, RasterLayer or SpatialGridDataFrame object as input (or a list of 

them).  

(d) Main results 

For the synthetic set of data of Figure 2.2, H is of low applicability, due to the high 

heterogeneity in the input data. On the contrary, Raoôs Q meaningfully highlighted the areas 

with higher heterogeneity since it allows considering distances together with relative 

abundance of values, the intersection between the simulated submatrices. 

 

Figure 2.2: An example of the calculation of Rao and Shannon indices on a hypothetical 

NDVI image.  In this case, Shannon index tends to overestimate diversity since it considers 

the differences in the abundance of classes, while Rao Q seems to be more reliable taking into 

account their distance.  

 

In Figure 2.3, it is apparent that H tends to saturate in case of high diversity since in the local 

9x9 pixels window of analysis all the pixel values, even though similar among them, are still 

different. As a consequence, since H does not take into account their distances but only their 

relative abundances; its value will always approximate saturation. On the contrary, Raoôs Q 

overcomes this limitation by the pairwaise distance term. 








































































































































































































































